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Abstract  

Model calculations are performed to illustrate the recently proposed general tensor expressions for the intensity 
of orbit- and spin-forbidden two-photon transitions in lanthanide compounds. Attention is focused on the 
857/2---.6117f2 transition of the Gda+-ion in a cubic lattice. A transition operator of the required symmetry is 
obtained by a fourth-order combination of the two dipole operators with spin-orbit coupling and crystal field 
interactions. The calculation makes use of a symbolic algorithm to evaluate 9j and 12j symbols. 

1. Introduct ion 

Several theoretical papers have been devoted to 
higher-order corrections to the second-order theory of 
two-photon transitions in lanthanide compounds [1-4]. 
A critical examination of the use of perturbation theory 
in such intensity calculations has also been presented 
[5,6]. In a recent contribution we have offered general 
expressions for the fourth-order mechanism involving 
a combination of spin-orbit coupling (s.o.c.) and crystal 
field interactions [7]. This work generalized partial 
results obtained previously by Downer and Bivas for 
the specific case of the sS---> 61 transition in the Gd 3+ 
ion [8]. The transition operator corresponding to the 
fourth-order mechanism is given in eqn. (1). 
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The second-quantization operators a + and a create 
and annihilate the 4l+ 2 states of an l-electron (1= 3). 
The transition dipoles reach intermediate states of the 
IN-1I ' configuration at an energy distance E w ( l '=  2 or 
4). The electric vector of the radiation field is written 
as the tensor quantity e (m) while the crystal field ex- 
perienced by the l' electrons is denoted by the B (°k) 
tensor. The results in eqn.(1) are derived for two photons 
of the same source. This implies that the antisymmetric 
rn = 1 combination of the two photons vanishes. How- 
ever, the expression can easily be generalized to describe 
a two-beam two-photon experiment. The required ex- 
tension has been outlined for the case of a third-order 
mechanism by Sztucki and Str~k [9]. 

The present paper provides an example of the explicit 
calculation of the transition operator. Our purpose is 
twofold: (i) to illustrate the use of the expression in 
spectroscopic applications; (ii) to obtain an independent 
check of the results in eqn. (1). The transition we have 
picked is between the highest Mj components of the 
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887/2  and 6117/2 t e r m s  of the Gd 3 + ion in a cubic lattice. 
This transition has the advantage that it can be calculated 
by hand at the determinant level, thereby offering a 
particularly transparent example of the selective se- 
quence of shell openings and closings underlying the 
two-photon process. 

2. Preliminaries 

The scalar product of two tensors is defined as 

T ('). U (") = ~ , (  - 1 ) 'T f f ' )U~  (2) 
t 

The components of the one-electron operator (a + 
a)} 1A)" can be obtained in explicit form by the following 
decoupling relation: 
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where a~- creates an electron with labels (s, re,e, l, m~e) 
and a,  annihilates an electron with labels (s, ms, ,  l, 
mtn). 

In the following, we substitute a by f. The orbit rank 
A is equal to 6 to realize the I ~  S transition (zS& = 6) 
while the total rank n can be 5, 6 or 7 (M=5) .  The 
AMj change in going from (sS7/2,7/21 to 16117/2,17/2 ) 
amounts to 5, which implies that t must be equal to 
-5 .  All possible t = - 5  components of (f+f)o,)- are 
listed in Table 1. 

The so-called physical part of the expression in eqn. 
(1) involves the coupling of the e and B tensors. It is 
defined as follows: 
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(4) 
For a cubic crystal in a d-shell the B (°4) tensor has 
only three non-zero components [10] 
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where 
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As a result, the sum in eqn. (4) will be simplified 
considerably. The t=  +5 components required for a 

AMj=5 transition adopt the following form: 

1 /~r~(02) JQ (04) 
((EE)(O2)B(04))( '065) = 7 \~:~:]0'1 ~ 0 ' 4  (7) 

[ ~c'~ (02) ~7~ (04) 
( ( ' ~ ! E ) ( ° 2 ) B ( ° 4 ) ) ( ° 5 ) -  x/3 \ ' :~1o ,  i ~ o ,  4 ( 8 )  

( t ' ~ ( 0 1 ) ] [ l ( o 4 ) ' t  ( 0 5 ) _ / r ~ x t ( 0 1 )  ]~ (04) 
\~_,..} .u ]0,  5 - -  ~,'c~-]0, 1 * 'O, 4 (9) 

In addition to these operator parts, the general 
expression also involves several nj-symbols (n=6, 9, 
12). Only the 6j-symbols up to a certain rank are 
available from tables [11]. All other symbols were 
evaluated by means of a symbolic algorithm based on 
a factorization routine [12]. Some relevant results are 
specified below. 
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3. The ground and excited state 

The Mj= + 7/2 component of the ground state reads 
as follows: 

(sS7/2, 7/2 I 

={3 + 2 + 1 + 0 + - 1  + - 2  + -3+} * (11) 

where the asterisk denotes the complex conjugate. The 
Mr = + 17/2 component of 6117/2 also involves a single 
determinant, namely {3 + 3- 2 + 1 + 0 + - 1  + -2+}. 
It must be realized that the phase of this component 
cannot be chosen arbitrarily but is fixed within the 
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TABLE 1. Components of the one-electron operator with AMj=5 
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Wigner-Racah construction of the fN states on which 
all the tensor formulae are based [1]. To determine 
this phase, we work out a standard matrix element 
connecting the two components. The general form of 
these matrix elements is given by Judd [13]: 

(SLIM, I (f+ f)(_~,)"[S 'Z'J '3 ' /))  
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where (f+f)(~)n represents the second quantized form 
of - W  (~')", which is a sum of single-particle operators 
[14]. As usual, degeneracy numbers such as 2 / +  1 are 
contracted to [J]. The W (~k) doubly reduced matrix 
element can be calculated using the fractional parentage 
coefficients tabulated by Nielson and Koster [15]: 
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Some relevant reduced matrix elements between 
SST,~ and 611, are listed in Table 2 [8]. 

TABLE 2. Reduced matrix elements a 
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aDowner and Bivas [8] have listed results for 7/2 ~<J' ~< 15/2. Their 
W (105 values for J '=  11/2, 15/2 appear to be incorrect. 

From these results, a suitable allowed matrix element 
can now be calculated: 

1 
(887/2 , + (16)6 6 7/21(f f)_,  1117/2, 17 /2) -  ¢V (14) 

+ (16)6 We recall that the explicit form of the (f f)_5 operator  



A. Ceulemans, G.M. Vandenberghe / Two-photon transitions in lanthanide compounds" 105 

is listed in Table 1. Of all its constituent parts, only 
the f+3÷f3- combination will be active. It is indeed the 
only combination which produces the correct change 
of spin orbitals as required by the transition between 
the (8S7/2,7/21 and 16117/2,17/2) determinants. The ex- 
pansion coefficient of f-+3+f3- in ~.¢e+m(16>6v_5 being 1/(7 
(see Table 1), eqn. (14) can be rewritten as 

(8S7/2, 7/2f+-3 +f3- = - (61,7/2, 17/21 (15) 

Substitution of the determinant form of the ground 
state component then finally yields 

[6117/2 , 17/2) 

=(3 + 3 -  2 + 1 + 0 + - 1  + - 2  + } 

(16) 

The relative phase of this component is now fixed in 
accord with the tensorial method. 

4. Evaluation of the fourth-order expression 

In the master expression of eqn. (1), a series of re- 
couplings has given rise to the first term in which the 
spin-orbit coupling operator (a+a) °1>° appears on the 
far right of the operator part, directly confronting the 
16117/2,17/2) ket. Clearly this term cannot contribute to 
the intensity since s.o.c, is unable to raise the spin of 
the 61 term. To simplify the treatment, we will neglect 
contributions from g electrons and limit our attention 
to intermediate f6d configurations. As a result of the 
various selection rules governing the changes of S, L 
and J, eqn. (1) then reduces to 
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where terms with vanishing 9j and 12j symbols (cf. eqn. 
(10)) have been omitted. When working out the operator 
tensors only the activef+_3+f3_ parts have to be retained. 
After a number of substitutions involving the results 
from Table 1, eqns. (7)-(10), the transition operator 
then reduces to 

7 ~  (4/]r[5d)2E~3 ~:i[(eE)<o°p + (EC)<o°]qB ~0,~)fz 3 +f3- 

(18) 
Surprisingly, the terms in SOd have cancelled. An ex- 
citation channel involving s.o.c, in the intermediate d- 
shell is thus effectively forbidden. This selection rule 
is clarified in the next section. Now the electric radiation 
fields may be decoupled in the usual way: 

1 [tAm)Ao,)~_ tAo,)~(ol)~l (19) (EE)(? 1) = ~ [\~-0, 1 ~-0. O] \ t0 ,  0 ~0,1 ]3 

1 rtAol) ~(ol)-~ _~_ t.(ol)Ao,).,] (20) (ee)(o °2) = ~ tt~0., to.o, -- ,~o. o ~o. 1 ,, 

In a single source experiment, the tensor of rank 1 in 
eqn. (19) vanishes. The 'physical' part of the operator 
thus reduces to 

[(e~.)(0?l) ..[_ /L.~'t(02)'l R (O4)_ ,/'~.(01)~:(01)/~ (04) (21) \~-~-20, 1 Ja~' 0, 4 --  v~-0, 1 ~-0,0 ~ 0 , 4  

Bracketing the f  +_ 3 +f3- operator yields - 1 in accordance 
with eqn. (15). The entire transition moment integral 
then finally becomes 

/.I/1 I¢'~x2/'P--3~ (01) (01) n(04) 7 v/~ ~ "+Jlrpa 2 L fd gfeo. I Co. o Elio. 4 (22) 

A spin-orbit coupling and crystal field assisted two- 
photon process between the highest Mj components of 
8S7/2 and 6117/2 of Gd 3+ in elpasolite lattices is thus 
allowed. It is seen to require an incident beam with 
an electric component along the z direction (~°o~)) and 
in the x, y plane (e~O°l~)). 

5. Fourth-order mechanism step by step 

In the following flow chart, we view the two-photon 
process at the determinant level, starting from the 
excited state. The sequence of steps involves, in con- 



106 A. Ceulemans, G.M. Vandenberghe / Two-photon transitions in lanthanide compounds 

secutive order, the dipole operator, spin-orbit coupling, 
crystal field interaction, and again the dipole operator. 
The labels between brackets refer to d electrons. For 
each step the relevant operator is fully specified. 

in the d-shell would counteract this change thus ren- 
dering the total jump impossible. Finally, one can also 
easily verify why other photon polarizations would not 
yield the desired result. 

16117m, 17/2)={3 + 3- 2 + 1 + 0 + - 1  + - 2  +} 

1 
~ -~ eg°'o'~ ( 4Jqrl5d)d f+ f2+ 

={3 + 3- [2 +] 1 + 0 + - 1  + - 2  +} 

erf *fa- 

= { 3  + 2 + [2 +] 1 + 0 + - 1  + - 2  +} 

3qr~ B4d+-e+d2 ÷ 

= { 3  + 2 + [ - 2  +] 1 + 0 + - 1  + - 2  + } 

e~°' ~+ ~ ( 4j~rl5d)f+-3+d- 2+ 

= {3 + 2 + 1 + 0 + - 1  + - 2  + - 3  + } 

1 
= 18S7/2, 7/2) 

The total transition operator is obtained by taking the 
product of all individual operators, multiplied by an 
additional factor - E ~  3 from the perturbational for- 
malism. This result must be taken twice since the 
interchange of the second and third step provides an 
alternative excitation channel with exactly the same 
transition moment. The resulting operator string 

+ + + + 
is f-3+d-2+d-2+d2+f~+f3-d2+fz+ which reduces to 
--f+3+f3-. This is precisely the one-electron change 
during the transition (cf. eqn. (15)). The total transition 
moment then equals the coefficient preceding this op- 
erator, namely, 

2,8 
2 - 3  (Ol) oa) (o4) 

7v~ (4~rl5d) E¢a ~zE~.I ~.oBo,4 (23) 

which coincides with the result of the preceding section 
and thus provides an independent check of the for- 
malism. The flow chart clarifies the selective aspects 
of the transition. It shows why s.o.c, cannot precede 
the photon process. Indeed the 3-  orbital cannot be 
changed into a 2 + orbital before the 2 + slot has been 
opened by the radiation field. Furthermore it also 
illustrates why s.o.c, in the d-shell cannot contribute; 
indeed, to realize the total AMj = 5 jump, we must take 
benefit of the maximal change of mr, quantum number 
allowed by the crystal field operator. Spin-orbit coupling 

6 .  C o n c l u s i o n s  

In this paper we have calculated the transition moment 
integral between the highest Mj components of the 
8S7/2 ---> 6117/2 two-photon absorption line of G d  3 + in cubic 
lattices. Two different methods of calculation were found 
to yield the same results. This provides a gratifying 
test for the recently proposed [7] fourth-order expres- 
sions for spin- and orbit-forbidden two-photon tran- 
sitions in lanthanide compounds. As the paper illus- 
trates, these expressions can be calculated without a 
detailed knowledge of the determinant form of the 
ground and excited state wave functions. The way is 
thus open to more extensive applications to two-photon 
absorption spectra of Gd 3+ in cubic lattices, such as 
elpasolite [16]. 
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